Geometri Öğretiminde Karşlaşılan Güçlükler – Matematik.US

nişantaşı escort

izmir eskort - sex hikayeleri - porno video - beylikdüzü escort bayan

Geometri Öğretiminde Karşlaşılan Güçlükler

Share

Hollandalı matematik öğretmeni ve eğitimcisi Pierre van Hiele'in belirlediği geometrik düşünme modeline göre öğrenciler geometride düşünme yapıları ardışık beş düzeyden geçer. Eğer öğrenciye sunulan geometri içinde bulunduğu düzeyin üstünde ise etkili öğrenmenin olması beklenemez. Başka bir anlatımla, öğrencilerin geometride başarısız olmalarının en belirgin nedenlerinden biri öğrencilerin hazır olmadıkları düşünce seviyelerindeki konuları anlamasının beklenmesidir. Fakat, öğrenciler hazır bulundukları düşünce seviyesine ilişkin konularda bile başarısız olabilmektedirler. Bunun nedeni ise görselliğin birinci derecede önemli olduğu matematik alanında yapılan sınıf uygulamalarının görsellikten uzak oluşudur. Daha açıkçası, geometri derslerinde yalnızca yazı-tahtası ve tebeşir kullanılarak öğretim yapılmakta, öğrencilerden ise uzamsal düşüncelerinin geliştirmeleri beklenmektedir. Bu durumun değiştirilmesi gerektiği açıktır.

Ülkemizde yetişekte yer alan konular ne olursa olsun okulda anlatılan konuları, öğretim yöntemini, konuların ele alınan yönlerinin belirlenmesini etkilen en büyük faktör üniversite giriş sınavıdır. Okullarda üniversite giriş sınavlarında soru çıkacak konulara ağırlık verilmekte diğer konular yüzeysel olarak geçilmekte ya da hiç üzerinde durulmamaktadır. Dönüşüm konusunun etkili bir şekilde anlatılması için öğretmenin tahtada hassas çizimler yapması gerekmektedir. Bu da bu konunun öğrencilere aktarımını zorlaştırmakta, öğretmen için ayrı bir yetenek gerektirmektedir. Çizim konusunda yetenekli bir öğretmen her ne kadar iyi çizimler yapsa bile öğrencinin tahtada gördüklerini daha sonra tekrarlamak üzere defterine kaydetmesi oldukça zordur. Ayrıca zaten oldukça yüklü olan Türk Milli Eğitim sistemi yetişeğinde bir de böylesi uğraştırıcı bir konunun üzerinde durulması ilk bakışta çok anlamlı gelmeyebilir. Oysa matematiksel düşünme birbirinden tamamen ayrık sanılan konularda zor problemlerin çözülmesi, karmaşık işlemlerin sonuçlarının bulunması değil, bu sonuçlara ulaşmak için izlenen yollar, ulaşılan hedeflerdir.

Yazarlar: Asuman DUATEPE - Yaşar ERSOY

About Author

http://www.matematik.us

Bahadır Bilgi ve İletişim Teknolojileri {BİT} meraklısı bir matematik eğitimcisidir. Hacettepe Üniversitesi Eğitim Fakültesi, Matematik Eğitimi Anabilim Dalı öğretim üyesidir.

yıldırım araç kiralama akyurt evden eve nakliyat Gümüşhane evden eve nakliyat Hakkari evden eve nakliyat Hatay evden eve nakliyat Isparta evden eve nakliyat